105 research outputs found

    The weight enumerators for certain subcodes of the second order binary Reed-Muller codes

    Get PDF
    In this paper we obtain formulas for the number of codewords of each weight in several classes of subcodes of the second order Reed-Muller codes. Our formulas are derived from the following results: (i) the weight enumerator of the second order RM code, as given by Berlekamp-Sloane (1970), (ii) the MacWilliams-Pless identities, (iii) a new result we present here (Theorem 1), (iv) the Carlitz-Uchiyama (1957) bound, and, (iv′) the BCH bound.The class of codes whose weight enumerators are determined includes subclasses whose weight enumerators were previously found by Kasami (1967–1969) and Berlekamp(1968a, b)

    Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory

    Get PDF
    Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged rho mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927(77) GeV^2 or Bc =(1.56 \pm 0.13) 10^{16} Tesla. The condensation of the charged rho mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.Comment: 14 pages, 5 figures, 2 tables, elsarticle style; continuum limit is analyzed, best fit parameters are presented in Table 2, published versio

    Production of gliders by collisions in Rule 110

    Get PDF
    We investigate the construction of all the periodic structures or “gliders” up to now known in the evolution space of the one-dimensional cellular automaton Rule 110. The production of these periodic structures is developed and presented by means of glider collisions. We provide a methodology based on the phases of each glider to establish the necessary conditions for controlling and displaying the collisions of gliders from the initial configuration

    Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes

    No full text
    International audienceIn this paper we present efficient implementations of McEliece variants using quasi-dyadic codes. We provide secure parameters for a classical McEliece encryption scheme based on quasi-dyadic generalized Srivastava codes, and successively convert our scheme to a CCA2-secure protocol in the random oracle model applying the Fujisaki-Okamoto transform. In contrast with all other CCA2-secure code-based cryptosystems that work in the random oracle model, our conversion does not require a constant weight encoding function. We present results for both 128-bit and 80-bit security level, and for the latter we also feature an implementation for an embedded device

    Growth and Decay in Life-Like Cellular Automata

    Full text link
    We propose a four-way classification of two-dimensional semi-totalistic cellular automata that is different than Wolfram's, based on two questions with yes-or-no answers: do there exist patterns that eventually escape any finite bounding box placed around them? And do there exist patterns that die out completely? If both of these conditions are true, then a cellular automaton rule is likely to support spaceships, small patterns that move and that form the building blocks of many of the more complex patterns that are known for Life. If one or both of these conditions is not true, then there may still be phenomena of interest supported by the given cellular automaton rule, but we will have to look harder for them. Although our classification is very crude, we argue that it is more objective than Wolfram's (due to the greater ease of determining a rigorous answer to these questions), more predictive (as we can classify large groups of rules without observing them individually), and more accurate in focusing attention on rules likely to support patterns with complex behavior. We support these assertions by surveying a number of known cellular automaton rules.Comment: 30 pages, 23 figure

    Improving the Berlekamp Algorithm for Binomials x n  − a

    Get PDF
    In this paper, we describe an improvement of the Berlekamp algorithm, a method for factoring univariate polynomials over finite fields, for binomials xn −a over finite fields Fq. More precisely, we give a deterministic algorithm for solving the equation h(x)q≡h(x) (mod xn−a) directly without applying the sweeping-out method to the corresponding coefficient matrix. We show that the factorization of binomials using the proposed method is performed in O˜, (n log q) operations in Fq if we apply a probabilistic version of the Berlekamp algorithm after the first step in which we propose an improvement. Our method is asymptotically faster than known methods in certain areas of q, n and as fast as them in other areas

    Computing Naturally in the Billiard Ball Model

    Full text link
    Fredkin's Billiard Ball Model (BBM) is considered one of the fundamental models of collision-based computing, and it is essentially based on elastic collisions of mobile billiard balls. Moreover, fixed mirrors or reflectors are brought into the model to deflect balls to complete the computation. However, the use of fixed mirrors is "physically unrealistic" and makes the BBM not perfectly momentum conserving from a physical point of view, and it imposes an external architecture onto the computing substrate which is not consistent with the concept of "architectureless" in collision-based computing. In our initial attempt to reduce mirrors in the BBM, we present a class of gates: the m-counting gate, and show that certain circuits can be realized with few mirrors using this gate. We envisage that our findings can be useful in future research of collision-based computing in novel chemical and optical computing substrates.Comment: 10 pages, 7 figure

    On the generalized linear equivalence of functions over finite fields

    Get PDF
    In this paper we introduce the concept of generalized linear equivalence between functions defined over finite fields; this can be seen as an extension of the classical criterion of linear equivalence, and it is obtained by means of a particular geometric representation of the functions. After giving the basic definitions, we prove that the known equivalence relations can be seen as particular cases of the proposed generalized relationship and that there exist functions that are generally linearly equivalent but are not such in the classical theory. We also prove that the distributions of values in the Difference Distribution Table (DDT) and in the Linear Approximation Table (LAT) are invariants of the new transformation; this gives us the possibility to find some Almost Perfect Nonlinear (APN) functions that are not linearly equivalent (in the classical sense) to power functions, and to treat them accordingly to the new formulation of the equivalence criterion

    Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule

    Get PDF
    We study a two-dimensional cellular automaton (CA), called Diffusion Rule (DR), which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze spatio-temporal dynamics of collisions between localizations, and discuss possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat
    corecore